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We have investigated the fractal characteristics and shape complexity of the fracture surfaces of swelled
isotactic polypropylene Y1600 in supercritical carbon dioxide fluid through the consideration of the statistics of
the regions embedded in the contours at different height of fracture landscapes �also called islands in the
literature� of binary scanning electronic micrography images. The probability density functions of the areas A,
perimeters L, and shape complexities C �defined by L /2��A� of islands are shown to follow power laws
p�A��A−��A+1�, p�L��L−��L+1�, and p�C��C−��+1�, with the scaling ranges spanning over two orders. The
perimeter and shape complexity scale respectively as L�AD/2 and C�Aq in two scaling regions delimited by
A�103. The fractal dimension and shape complexity increase when the temperature decreases. In addition, the
relationships among different power-law scaling exponents �A, �B, �, D, and q have been derived analytically,
assuming that A, L, and C follow power-law distributions.
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I. INTRODUCTION

Polypropylene, being one of the fastest growing engineer-
ing plastics, has wide industrial and everyday life applica-
tions due to its intrinsic properties such as low density, high
melting point, high tensile strength, rigidity, stress crack re-
sistance, abrasion resistance, low creep and a surface which
is highly resistance to chemical attack, and so on �1�. Im-
pregnation of nucleating agents allows the polymer to be
crystallized at a higher temperature during processing and
changes a lot the mechanical and optical performance of the
resultant polymer matrix �2,3�. In such nucleating agent im-
pregnating processes, supercritical fluids are well-established
swelling solvents whose strength can be tuned continuously
from gaslike to liquidlike by manipulating the temperature
and pressure. Especially, supercritical carbon dioxide is a
good swelling agent for most polymers and will dissolve
many small molecules �4–7�, except for some fluoropoly-
mers and silicones �8�. This provides the ability to control
the degree of swelling in a polymer �9–11� as well as the
partitioning of small molecule penetrants between a swollen
polymer phase and the fluid phase �12,13�.

The morphology of fracture surfaces of a material is of
great concern and interest in many studies �14,15�. A fre-
quently used tool is fractal geometry pioneered by Mandel-
brot’s celebrated work �16�. Specifically, fractal geometry
has been widely applied to the topographical description of
fracture surfaces of metals �17,18�, ceramics �19–21�, poly-
mers �22–24�, concretes �25–28�, alloys �29–34�, rocks
�35–39�, and many other materials. In many studies, the local
roughness exponents H, which are a measure of the self-
affinity of the profile perpendicular to the propagation direc-
tion of the crack, are reported to be close to 0.8 and are
therefore regarded as universal �29,40–42�. On the other
hand, many different approaches have been adopted in the

determination of fractal dimensions D of fracture surfaces
and the estimated fractal dimensions from different materials
vary from case to case and are not universal, where D=2
−H was used when compared to Bouchaud’s universal local
roughness exponent �43�. It is noteworthy that there is no
direct relation between the fractal dimension of rough sur-
face and the local roughness exponent of profiles perpen-
dicular to the crack propagation direction, since the two
quantities concern different geometric objects.

Concerning the fractal characterization of the fracture sur-
faces of polypropylene, it was found that the fractal dimen-
sion of the fracture surfaces is less than 2.12 �23�. In this
paper, we investigate the shape complexity and fractality of
fracture surfaces of nucleating agents impregnated isotactic
polypropylene �Y1600� swelled with supercritical carbon di-
oxide based on the area-perimeter relationship �16,17,44�.
We shall see that the fractal dimension of the fracture surface
of supercritical dioxide swelled polypropylene is much
higher than that without swelling and decreases with increas-
ing temperature.

II. EXPERIMENT

The isotactic polypropylene �Y1600� powder we have
used has an average diameter of 3 to 4 mm. Fifteen grams of
isotactic polypropylene powder was melted in an oven at
200 °C and then made into film with a thickness of 0.3 mm
by using a press machine with a pressure of
0.5 Giga Newtown. The size of the standard film samples
was 1�3 mm2 and are refluxed with acetone for 24 h to
remove the impurities, and then annealed at 200 °C for 2 h.

The specimens are then swelled with supercritical carbon
dioxide. The schematic flow chart of the experimental appa-
ratus of swelling is illustrated in Fig. 1. The experimental
apparatus consists mainly of a gas cylinder, a gas booster, a
digital pressure gauge, an electrical heating bath, and valves
and fittings of different kinds. The system was cleaned thor-
oughly using suitable solvents and dried under vacuum. Iso-*Electronic address: wxzhou@moho.ess.ucla.edu
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tactic polypropylene films marked from 1 to 12 were placed
in the high pressure cell together with the desired amount
�1 wt % � of nucleating agent �NA21�. The system was
purged with CO2 and after the system had reached the de-
sired temperature and thermal equilibrium, CO2 was charged
until the desired pressure was reached. The impregnation
process lasted for 4 h and then depressurized the CO2 from
the high pressure cell rapidly. Then the vessel was cooled
and opened, and the specimens were taken out for analysis.
All of the metallic parts in contact with the studied chemicals
were made of stainless steel. The apparatus was tested up to
35 MPa. The total volume of the system is 500 mL. The
swelled polypropylene films with a notch at the center of
each film were merged in liquid nitrogen for a few minutes
and the fracture surfaces were obtained by bending, resulting
in a mode I failure.

The swelling experiments were performed at fixed pres-
sure of 7.584 MPa and at four different temperatures of
T=60, 80, 100, and 120 °C. For each sample, we took ten
scanning electronic micrography �SEM� pictures at magnifi-
cation of 5000 or 10 000. The pictures have 256 gray levels.
Due to the nature of area-perimeter approach, the results are
irrelevant to the magnification �16�. A gray-level picture was
transformed into a black-and-white image for a given level
set � according to the criterion that a pixel is black if its gray
level is larger than 256� and is white otherwise. The resultant
binary image has many black islands �i.e., the regions em-
bedded by contours at a given height of the fracture surface

landscape�. A typical binary image of islands is shown in
Fig. 2. In our calculations, we have used 11 level sets from
0.45 to 0.95 spaced by 0.05 for each SEM picture.

III. FRACTALITY AND SHAPE COMPLEXITY

A. Functional area-perimeter analysis

If an island is fractal, its area A and perimeter L follow a
simple relation,

L1/D � A1/2, �1�

where D is the fractal dimension describing the wiggliness of
the perimeter. For D=1, the perimeter of the island is
smooth. For D=2, the perimeter becomes more and more
contorted to fill the plane. This area-perimeter relation �1�
can also be applied to many islands when they are self-
similar in the sense that the ratio of L1/D over A1/2 is constant
for different islands �16�. It has been used to investigate the
geometry of satellite- and radar-determined cloud and rain
regions by drawing A against L for different regions in a
log-log plot �44�. The slope of the straight line obtained by
performing a linear regression of the data gives 2/D.

For many kinds of surface, the fractal dimensions vary
with height thresholds, which can be illustrated by the func-
tional box-counting method �45�. The theory has been
worked out �46� with direct confirmation from experiments,
such as laboratory rough surfaces �35� and topography sur-
faces �47–50�, and simulations �51� as well. This multifractal
nature was also observed in our experimental results. Figure
3 plots the fractal dimension D��� as a function of the height
threshold � using functional area-perimeter analysis. We find
that D��� is not independent of the threshold �, especially for
large and small threshold values. However, we focus on the
fractal aspect in our ensuing analysis, which amounts to tak-
ing a canonical averaging view of the fracture surface topol-
ogy.

When D is interpreted as the fractal dimension of the
perimeter, relation �1� amounts to assume that the fractal
dimension if any of the area is two �46�. When both the
perimeter and the area are fractal with fractal dimensions DL
and DA�2, then a box-counting estimation of the fractals
dimensions gives

FIG. 2. Image of the recognized islands from a typical SEM
picture of swelled isotactic polypropylene impregnated with NA21
at a level set of 0.7.

FIG. 3. �Color online� Functional area-perimeter analysis of
three SEM images from experiments with T=80 °C.

FIG. 1. Schematic flowchart of the experimental apparatus of
the swelling of isotactic polypropylene with supercritical carbon
dioxide.
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A�r� = �R

r
	DA

r2 �2�

and

L�r� = �R

r
	DL

r . �3�

Eliminating r, we obtain

A � L�2−DA�/�1−DL�. �4�

Comparing Eqs. �4� and �1�, we have

D =
2�1 − DL�

2 − DA
. �5�

In this case, D is actually not a fractal dimension, but some
scaling exponent relating DA and DL. Actually, we have per-
formed boxing-counting analysis on the area and do not ob-
serve power law between the number of boxes and the reso-
lution r.

B. Scaling between area and perimeter

Based on the area-perimeter relation, we plotted for each
temperature L against A for all islands identified at different
level sets. The resultant scatter plot for a given temperature
shows nice collapse to a straight line. The four slopes are
D=1.34±0.08 for T=60 °C, D=1.32±0.07 for T=80 °C,
D=1.31±0.08 for T=100 °C, and D=1.28±0.09 for T
=120 °C, respectively. The errors were estimated by the rms
of the fit residuals.

However, a closer investigation of the scatter plots shows
that there are two scaling regions with a kink at around A
=1000. To have a better view angle, we adopt an averaging
technique for both A and L. We insert n−2 points in the
interval �min�A� ,max�A�� resulting in min�A�=a0�a1�a2

� ¯ �an=max�A� so that ai’s are logarithmically spaced.
We can identify all islands whose areas fall in the interval
�ai ,ai+1�. The geometric means of L and A are calculated for
these islands, denoted as 
L� and 
A�. The calculated means

L� and 
A� are plotted in Fig. 4. The two scaling regions are
fitted, respectively, with two straight lines and we have D1
=1.42±0.06 for T=60 °C, D1=1.33±0.06 for T=80 °C,
D1=1.33±0.07 for T=100 °C, and D1=1.30±0.05 for T
=120 °C, in the first region that 
A��1000 and D2

=1.96±0.07 for T=60 °C, D2=1.89±0.24 for T=80 °C,
D2=2.15±0.11 for T=100 °C, and D2=2.07±0.14 for T
=120 °C in the second region that 
A�	1000.

It is very interesting to notice that L�A for large areas.
Under the assumption that the islands are fractals, this rela-
tion can be interpreted that the perimeters of the large islands
are so wiggly that they can fill the plane. However, there are
simple models that can deny this assumption of self-
similarity. Consider that we have a set of striplike islands
with length l and width w. We have L=2�l+w� and A= lw.
When w is fixed and l
w, it follows that L�A. This simple
model can indeed explain the current situation. For cracked
polypropylene, there are big striplike ridges in the intersec-
tion whose surface is relatively smooth. For small islands,
the fractal nature is more sound.

According to the additive rule of codimensions of two
intersecting independent sets, the fractal dimension of the
surface is Ds=D1+1 �16�. Therefore Ds=2.42±0.06 for T
=60 °C, Ds=2.33±0.06 for T=80 °C, Ds=2.33±0.07 for
T=100 °C, and Ds=2.30±0.05 for T=120 °C. We see that
the fractal dimension Ds increases with decreasing tempera-
ture. In other words, with the increase of temperature, the
surface becomes smoother.

C. Rank-ordering statistics of area and perimeter

In order to estimate the probability distribution of a physi-
cal variable empirically, several approaches are available.
For a possible power-law distribution with fat tails, cumula-
tive distribution or log-binning technique are usually
adopted. A similar concept to the complementary distribu-
tion, called rank-ordering statistics �52�, has the advantage of
easy implementation, no information loss, and being less
noisy.

Consider n observations of variable x sampled from a
distribution whose probability density is p�x�. Then the
complementary distribution is P�y	x�=�x

� p�y�dy. We sort
the n observations in nonincreasing order such that x1�x2
� ¯ �xR� ¯ �xn, where R is the rank of the observation.
It follows that nP�x�xR� is the expected number of obser-
vations larger than or equal to xR, that is

nP�x � xR� = R . �6�

If the probability density of variable x follows a power law
that p�x��x−�1+��, then the complementary distribution
P�x��x−�. An intuitive relation between xR and R follows

xR � R−1/�. �7�

A rigorous expression of Eq. �7� by calculating the most
probable value of xR from the probability that the Rth value
equals xR gives �52�

FIG. 4. �Color online� Plots of 
L� with respect to 
A� at differ-
ent temperatures. The plots are translated vertically for clarity. We
note that 
L�=4 when 
A�=1 in all four plots.
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xR � ��n + 1

�R + 1
	1/�

, �8�

when �R
1 or equivalently 1R�N, we retrieve Eq. �7�.
A plot of ln xR as a function of ln R gives a straight line with
slope −1/� with deviations for the first few ranks if x is
distributed according to a power law of exponent �.

We note that the rank-ordering statistics is nothing but a
simple generalization of Zipf’s law �16,52,53� and has wide
applications, such as in linguistics �54�, the distribution of
large earthquakes �55�, time-occurrences of extreme floods
�56�, to list a few. More generally, rank-ordering statistics
can be applied to probability distributions other than power
laws, such as exponential or stretched exponential distribu-
tions �57�, normal or log-normal distributions �52�, and so
on.

Figure 5 illustrates the log-log plots of the rank-ordered
areas A at different temperatures. There is clear power-law
dependence between A and its rank R with the scaling
ranges spanning over about two decades. Least-squared lin-
ear fitting gives 1/�A=0.80±0.05, 1 /�A=0.63±0.02, 1 /�A
=0.61±0.03, and 1/�A=0.85±0.04 with decreasing tem-
peratures, where the errors are estimated by the rms of the fit
residuals. Using ��A

=�1/�A
�A

2 , we obtain the power-law ex-
ponents �A=1.24±0.08, �A=1.59±0.06, �A=1.64±0.09,
and �A=1.18±0.05 with decreasing temperatures.

Figure 6 shows the log-log plots of the rank-ordered
perimeters L at different temperatures. There are also
clear power-law relations between L and its rank R whose
scaling ranges spanning over about three orders.
Least-squared linear fitting gives 1/�L=0.56±0.02,1 /�L
=0.51±0.01,1 /�L=0.55±0.03, and 1/�L=0.71±0.03 with
decreasing temperatures. We thus obtain the power-law ex-
ponents �L=1.78±0.07, �L=1.95±0.05, �L=1.83±0.12,

and �L=1.41±0.06 with decreasing temperatures. It is note-
worthy that the scaling ranges of the rank-ordering of both A
and P are well above two decades broader than most other
experiments with scaling ranges centered around 1.3 orders
of magnitude and spanning mainly between 0.5 and 2.0
�58,59�.

Assuming that p�A��A−��A+1� and p�L��L−��L+1�, we can
estimate the fractal dimension D in Eq. �1� according to the
relation p�A�dA= p�L�dL such that

D = 2�A/�L. �9�

The four estimated values of D using this relation �9� are
1.67, 1.79, 1.63, and 1.40 with increasing temperature. The
discrepancy of D from D1 is remarkable �15%, 25%, 18%,
and 7%, accordingly�. The source of this discrepancy is
threefold. First, the power-law distributions of A and L have
cutoffs at both ends of small and large values so that the
derivation of Eq. �9� is not rigorous. Second, the determina-
tion of the scaling ranges may cause errors. Third, the scaling
ranges of the three power laws are not consistent with each
other. Fourth, this may stem from the fact that a fractal view
of the surface is rough and thus call for further multifractal
analysis.

D. Shape complexity

To quantify the shape complexity of an irregular fractal
object, besides the fractal dimension, there are other relevant
measures related to the fractal nature �60,61�. For a
d-dimensional hypersphere, its surface and volume are re-
lated by

Sd,sph =
1

kd
Vd,sph

�d−1�/d, �10�

where

FIG. 5. �Color online� Log-log plot of the rank-ordered areas A
at different temperatures shown in the legend. The plots are trans-
lated vertically for clarity. The solid lines are linear fits to the data
at 59�R�3890 for T=120 °C, 10�R�1995 for T=100 °C, 22
�R�1000 for T=80 °C, and 8�R�800 for T=60 °C,
respectively.

FIG. 6. �Color online� Log-log plot of the rank-ordered perim-
eters L at different temperatures marked in the legend. The plots are
translated vertically for clarity. The solid lines are linear fits to the
data at 5�R�3890 for T=120 °C, 24�R�3000 for T=100 °C,
16�R�2000 for T=80 °C, and 10�R�1500 for T=60 °C,
respectively.
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kd =
�1/2�1 + d/2�

d�1/2 . �11�

Since a hypersphere has the maximal enclosed volume
among the objects with a given surface Sd, we have

Sd �
1

kd
Vd

�d−1�/d. �12�

Then the following dimensionless ratio

Cd � kdSd

Vd
�d−1�/d �13�

describes the irregularity or complexity of the investigated
object �60�. It follows that 1�Cd��. The limits are reached
at Cd=1 for hyperspheres and Cd=� for fractals. For real
fractal objects, sometimes known as prefractals �62�, the
scaling range is not infinite. The shape complexity Cd is thus
finite. In the case of d=2, we have

1 � C � L

2�1/2A1/2 � � . �14�

This dimensionless measure of shape complexity has been
applied to a scalar field of concentration in turbulent jet at
high Reynolds numbers �60,63�.

In Fig. 7 is shown the log-log plot of the rank-ordered
shape complexity C at different temperatures. The power-law
dependence C�R−1/� implies a power-law probability den-
sity of shape complexity, that is

p�C� � C−��+1�. �15�

We find that �=3.97±0.11 for T=60 °C, �=4.61±0.17 for
T=80 °C, �=4.93±0.20 for T=100 °C, and �=5.22±0.17
for T=120 °C. The mean logarithmic complexity 
ln C�
=1/ ��−1� �60� is calculated to be 0.34, 0.28, 0.25, and 0.24

with increasing temperature. In other words, the shape com-
plexity of the islands decreases with increasing temperature.
This is consistent with the fact that D decreases with increas-
ing temperature.

Following the procedure in Sec. III B, we calculate the
means, 
A� and 
C�. The results are shown in Fig. 8. Again,
we see two scaling regions guided by straight lines fitted to
the data

C � Aq. �16�

The slopes are, respectively, q1=0.21 for T=60 °C, q1
=0.17 for T=80 °C, q1=0.17 for T=100 °C, and q1=0.15
for T=120 °C, in the first region that 
A��1000 and q2

=0.54 for T=60 °C, q2=0.58 for T=80 °C, q2=0.44 for T
=100 °C, and q2=0.48 for T=120 °C in the second region
that 
A�	1000.We have verified that qi= �Di−1� /2 with i
=1,2 holds exactly for all cases, which is nothing but a
direct consequence of the combination of Eqs. �1� and �14�.

Similarly, we can derive the relationship among q, D, �A,
and � as follows:

� = 2�A/�D − 1� = �A/q . �17�

Again, the discrepancy between the fitted � values and those
estimated indirectly from Eq. �17� is remarkable �38%, 48%,
53%, and 30%�, which can also be resorted to similar rea-
soning.

IV. CONCLUSION

We have investigated the fractal characteristics of the
fracture surfaces of swelled isotactic polypropylene Y1600
impregnated with nucleating agent NA21 through consider-
ation of the statistics of the islands in binary images. At a
given temperature, the distributions of area and perimeter of
the islands are found to follow power laws spanning over
two decades of magnitude, via rank-ordering statistics. The

FIG. 7. �Color online� Log-log plot of the rank-ordered shape
complexity C at different temperatures. The plots are translated ver-
tically for clarity. The solid lines are linear fits to the data at 40
�R�3890 for T=120 °C, 24�R�5000 for T=100 °C, 40�R
�3000 for T=80 °C, and 25�R�1500 for T=60 °C,
respectively.

FIG. 8. �Color online� Plots of 
C� with respect to 
A� at differ-
ent temperatures. The plots are translated vertically for clarity. We
note that 
C�=2/�1/2 when 
A�=1 in all four plots.
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well-established power-law scaling between area and perim-
eter shows the overall self-similarity among islands when
A�103. This shows that the fracture surface is self-similar.
For large islands, the fractal dimension is estimated to be
close to 2 which can be explained by the fact that most of the
large islands are strip-shaped. The fracture surface is rougher
at low temperature with larger fractal dimension.

We have also investigated the shape complexity of the
fracture surfaces using a dimensionless measure C. The dis-
tribution of shape complexity is also found to follow a power
law spanning over two orders of magnitude. The shape com-
plexity increases when the island is larger. There are two
power-law scaling ranges between C and A delimited around
A=103, corresponding to the two-regime area-perimeter re-
lationship. The exponent q1 serves as an inverse measure of
overall shape complexity, which is observed to increase with
temperature. This is consistent with the change of fractal
dimension at different temperatures.

Furthermore, the relationships among different power-law
scaling exponents of the probability distributions ��A, �B,
and ��, of area-perimeter relation �D�, and of complexity-
area relation �q� have been derived analytically. However,
these relations hold only when the probability distributions
of A, L, and C follow the power laws exactly. In the present
case, we observed remarkable discrepancy between numeri-
cal and analytical results.
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